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We construct a two-dimensional subspace ¥ < C(K) such that an interpolating
projection on V is a minimal projection with the norm >1. That answers a
question posed by B. L. Chalmers. It also answers a question posed implicitly by a
theorem of P. Morris and E. W. Cheney. We also give a quantitative generalization
of the above mentioned theorem. As is suggested by the title, we use trace duality
to obtain these results. ¢ 1991 Academic Press, Inc

1. INTRODUCTION
This paper addresses a question posed by E. W. Cheney and K. H. Price:

ProBLEM 1.1 [3, Problem 15]. For what subspaces V in C(K) is it true
that at least one of the minimal projections of C(K) onto V is an inter-
polating projection?

Here K is compact Hausdorfl space and C(K) is the space of all
continuous real-valued functions on K.

DEeriNITION 1.2. For a finite-dimensional subspace V < C(K) we define
the projectional constant of V to be

A(Vy=inf{| P]|: P projection from C(K) onto V'}.

DerFiniTION 1.3, We say that a projection P from C(K) onto V is
minimal if
I Pl =Z(V).

* The research of this author was done in partial fulfillment of the Ph.D. degree at the
University of South Florida under the direction of Professors E. B. Saff and B. Shekhtman.
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DEFINITION 1.4, A projection P from C(K) onto V is called an inter-
polating projection if

Pf=73% flk)e,
j =1

where (k)< K; (v;)c V is a basis of V and v,(k;)=94,, i, j=1,..,n and
n=dim V.

An easy consequence of a well-known theorem of Nachbin [6] is:
PrROPOSITION 1.5 (cf. [4]). Let V be an n-dimensional subspace of C(K)

with A(V)Y=1. Then there exists an interpolating projection P from C(K)
onto V such that P is a minimal projection.

The following problem was open:

PROBLEM 1.6. Does the converse 10 Proposition 1.5 hold?

In Section 3 of this paper (Theorem 3.1) we construct an example of a
subspace ¥V = C(K) such that an interpolating projection is a minimal pro-
jection onto ¥ yet A(V) > 1, hence giving a negative answer to Problem 1.6.

This example also provides a counterexample (cf. Proposition 3.5) to

ConJECTURE 1.7 (Chalmers [1]). Let V be a finite-dimensional subspace
of a Banach space X. Let P be a minimal projection from X onto V. Then
P* is a minimal projection jrom X* onto the range of P*.

Theorem 4.2 answers Problem 1.1 in the finite-dimensional case.

DerINITION 1.8. Let P be a projection from C(K) onto V. Define
Ap: K— R by

Aplk)=sup{ (P )R - I <]

Clearly sup{|4pk), ke K} =|P|.

In an attempt to solve Problem 1.1, Cheney and Morris proved the
following:

THEOREM 1.9. (cf. [2]). Let V be an n-dimensional Chebyshev subspace
of C(K) which admits a minimal interpolating projection P. Then either
IPI=1or

# 1k Ap(k)=|P}>n

(Here # stands for the cardinality of the set).
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In Section 4 (Theorem 4.8) we obtain the following generalization of this
result:

Let P be a minimal interpolating projection from C(K) onto an n-dimen-
sional Chebyshev subspace V. Then

#{k: Ap(k)=|Pl)>n+(|P| — 1)

A few words about the methods employed in this paper.
We mostly deal with a finite set K. Hence C(K) =17, wherc m= #K.
Let (e;) be a canonical vector basis in R,,. If dim V'=n then an inter-

polation projection from /" onto V is a projection of the form

Px=Y (x,e)u,

j=1

ie., the point evaluation functionals in this case are vectors e;, j=1,..,n,
considered as the elements of the space /7.

We use an idea that goes at least as far back as Cheney and Price [3]
and Cheney and Morris [2] to describe a minimal projection as a solution
to a best approximation problem.

Let #(/7) be the space of linear bounded operators from /" into itself.
Let o < ({7 ) be a subspace of . defined by

o ={Ae P(I7):Range Ac Vckerd}.

Then P is a minimal projection from /7 onto V iff 0 is the best approxima-
tion to P from 7. Just as in [2, 3] we use the dual characterization of best
approximation to conclude that P is minimal if and only if there exists a
functional ¢ in [£(/7)}]* such that ¢ annihilates .&/ (i.e., p(4)=0 for all
Ae /) and

le(P) =P |l

The relative “novelty” here is the use of trace duality to describe the
functionals on £ (/7 ). While the trace duality is frequently used in Banach
space theory (cf. [5,7]) it is especially transparent for #(/7). For
convenience we reprove the needed results in Section 2.

In Section 3 we construct a counterexample to Problem 1.6 and Conjec-
ture 1.

In Section 4 we derive a matrix equation which gives a necessary and
sufficient condition for a space to have interpolating as a minimal one. As
a corollary we derive the generalization of the Cheney—Morris Theorem 2.
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2. TRACE DuALITY

In this section we introduce some theoretical aspects of trace duality for
the spaces .#({" ). Although most of this theory is well-known for general
Banach spaces, we find it convenient to prove the results for this particular
case emphasizing the specific details needed in the next sections.

We use ¢, ..., e,, to denote the canonical bases in R, and (-, -) to
denote the canonical inner product in R,,. /” and /7 stand for R,
cquipped with the norms

lxli, =max{|{x,e, >, j=1,..m}

”n
Ixl, =3 [<x.¢;)l

=1

respectively.
For ye/? and vel” we use y ®v to define an operator in £(I7) as

[y®v](x):={p, x 0.
Hence if A€ #(/7) is given by a matrix 4 = (a,) then

A=Zuj®e/‘

where u, are the rows vectors of the matrix 4. For 4€ #(I”) given by a
matrix (a;) we define

lA] :=max{ Y iayl,i= l,...,m}.

J=1

DeriNITION 2.1, The nuclear norm of 4 = (a;;) is defined by

v(A):= ) max|a,l|.

i=1

Next we well need a somewhat unusual notation.

DermNiTiON 2.2, Let A =(a;)e L(I7). We use Z(A) to denote the class
of matrices (s;) defined by

1 if a,>0
s;=1¢ —1 if a,<0
any number from [—1,1]if ¢;=0.

640 65 2.8
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DEeFINITION 2.3, For a  xm matrix 4 = (a,) define an extremal set
f(A)={i: Y lagi=A4l,i=1,.., t}.
j—1
PROPOSITION 24. Let A=(a,)e LU%); I'=(y;)e £(17). Then
L te(AD) < 4] v(F),

2. The equality in 1 is attained if and only if I'= +[2(A))" D where
[Z(A)]€E(A) and D=[4d,, .., d,] is a diagonal matrix

0 dy

with d;20 and d;=0 if j¢ T (A),
3. In particular for any matrix A there exists I" such that tr(Al') =
AN v(I').

Proof. To prove 1, observe that

m m
Z Z a7
i=1 j=1

{tr AT| =

< Y (max |7,~.~|)< > Ia,jl)

i=1 j=1
<maX<Z I%I)Z max [y} (2.1)
! i1 i=1 J

To prove 2, note that the first inequality in (2.1) is an equality if and
only if each column of the matrix I" is a positive constant multiple of the
vector (sign a;), j= 1, .., m, while the second inequality is an equality if and
only y,=01f j¢ 7(4).

Finally 3 follows from 2. ]

PropPosITION 2.2. Let N(I™.) stand for the space of all mx m matrices
equipped with the nuclear norm v. Then A (1) is isometrically isomorphic to
(LU2)]*

Moreover, every functional ¢ € [L(17)]* is uniquely identified with a
Be A(I7) by

@g(A)=1tr(AB), forall Ae (7)),
o gl =v(B).
Proof. Since m?=dim £L(I")=dim[£(7)]*=dim 4(I") we con-
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clude that the spaces in question are algebraically isomorphic. Proposi-
tion 2.4(3) shows that the map B — ¢ is an isometric isomorphism. ||

Let ¥, be an n-dimensional subspace of " .
Let /(V,):={Ae (7 ):RangeAcV, cker 4}.
Let 2(V,):={Pe.#(I"): P is a projection from /" onto V,}.

PROPOSITION 2.6, Let Pe:2(V,). Then P is minimal if and only if there
exist [X(P)] e E(P) and a diagonal operator D= [d,. ...d,] such that

tr([X(P)]T" DA)=0,  forall Aed(V,) {2.2)

Proof. Note that P+ o/ (V,)=2(V,), for every Pe #(V,). Hence, P is
minimal if and only if zero is the best approximation to P from (V).
Therefore P is minimal if and only if zero is the best approximation to P
from .«/(V,). Therefore P is minimal if and only if there exists a functional
@ e [Z£({7)]* such that (P)=|P|| @i and ¢@(4)=0 for all Ae.&.

According to Proposition 2.5 this is equivalent to the existence of an
operator I e .+"(/7) with

(@) (P =|P| v(]),
(b) tr(Al')=0for all Ae (V).
Using Proposition 2.4(2) we conclude that I is of the form [Z(P)]" D. |}

Remark 2.7. The space V; consists of all vectors xe /7 that annihilate
v, e,

Vi=1{xell": {x,e)=0forall veV,}.

Hence dim V; =m —n. Let ¢,, .., v, be a basis for V, while f}, ..., f,,_, is
a basis for V.
Then

A(V,)=span{f;®uv;i=1,..m—n;j=1,.,nj
Therefore [X(4)] D annihilates .o7(¥,) if and only if
tr([2(A4)]" D[ f,®v,]) = [, [Z(4)]7 Dy;) =0,
forall i=1,.,m—n;j=1, ., A

Remark 2.8. Proposition 2.6 is equivalent to: P is minimal if and only
if there exists a e .4"°(I"") with

(a) tr(PI)=|Pliv(l),
(b) tr(A1'Y=0 for all Ae /(V,).
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Remark 2.9. A proposition similar to Proposition 2.5 can be proved for
operators in £ (/7).
In this case the norm of 4 = (a;)e £(/7') is defined to be

| 4]l = max { Y da,lj=1, .., m}

i=1

while the norm in A(/7) is
v(d)=) max |a,|

i=1

and tr(4AB) < || 4] v(B).

3. THE MAIN EXAMPLE

THEOREM 3.1. There exists a two-dimensional subspace V,<1® such
that the interpolating projection P=e¢,®v,+e,®v, is minimal and
[Pl >1.

Proof. Let

vz=<0,1,\/§ 2+

T T4 2 >,
V,=span{v,, t,} </°..

Consider the projection P=¢, ® v, + ¢, ® v,. In matrix form

, 0, 0, 0, O
0, 0, 0, O

1
4, 0, 0, 00 O
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Next we describe the space .&/(V,). Note that the vector
f=(x,, X2, 11, 15, 13, 4) belongs to V5 if and only if

O0={fiv)=x,+—— +\/_ \/_ +4\/ 3+\/T§[4»
0=(f,v2>=x2+\/_1 +2+\/_ \/_ #14.

4

Choosing (t,, t,, 13, 2,) to be consecutively (1,0,0,0), (Q, 1,0,0),
(0,0, 1,0), and (0, 0, 0, 1) we obtain the basis f,, f,, f3, f4 for V5 as

f,=<—2+\/§ V2 1,0,0,0),

-,

4’4

Now &/(V,) can be written as a linear span of 4!/} with
AV =f@u;  j=1,.,4i=12
Next pick the operator I to be

[0, 0, 1, 1, 1, 17
0, 0, 1, 1, =1, -1
0, 0 1, 1, 1, 0
[_‘=
0 0 1, I, 0 -1
0, 0, 1, 0 1, 1
_Oa 0’ 07 _L 1) 1__‘

By Proposition 2.4(2) (or by direct calculation) we have
2422
tr(PI) = || P v(r)=4xL4L2=2(1 +/2),

2+2\/5 1+\/§
1Pl = 7 = 3 > 1

To prove that P is minimal (cf. Remark 2.8) it suffices to prove that

O0=tr(rAY) = f(I'v,); i=1,2;j=1,2,3,4.
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We have
~ 32242 32242
Te,={1+ /2.0, 1+X2 27V MO LY
vy <+\/ . + 4 4 1+ 4 2 s
5242 4432 2442 4432
re,={(01+/2, , Ve - il )
& < VAT s T4 7 )

It is now easy to verify that 0= f,(I'v,)= f;([vs)i j=1,2,3,4. 1

Remark 3.2. The space V, in the previous theorem is in fact a
symmetric Banach space in the sense that

lav, + Bu,ll = 1 Bu, + av,|l = av, — fiv,| for all =« feR.

Remark 3.3. The space V, constructed above is a Chebyshev subspace
of C(K), where K={1,2,3,4,5,6} in the sense that V, restricted to any
two points is two-dimensional. Equivalently every 2 x 2 submatrix of the
matrix

242 2 2+ 2 2

4 4 4 4

=~ = = =
0 1 M2 V2 2 240

4 4 4 4

is invertible.

Remark 3.4. It is possible to show that “six” (the dimension of /%) is
the least possible. If V, is a subspace of /™ with m<S5 that admits a
minimal interpolating projection then A(V,)=1.

ProprosITION 3.5. The projection P constructed above provides a counter-

m

example to Conjecture 1, i.e., P* is not a minimal projection from 17" onto the
range of P*.

Proof. Clearly the range of P* is span{e,,e,}c/%. Consider the
projection Q from /$ onto span{e,, e,} defined as

Ox=<x,e,0e,+{x,e,)e;.

Then |Qxil, =[<x, e, )|+ {x, €0} <XP_ {x,¢;>=lixll,. Hence 1=Q]i <
[[P*| since [|[P*I'={Pli>1. }

4. CHENEY-MORRIS THEOREM

In this section we will assume that ¥V, is an n-dimensional subspace of
1" "% Every interpolating projection from /”** onto ¥, can be written as
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P=3%]_,e,®v;, where (ki,.., k,) is a coliection of distinct integers
between 1 and # + k. In this case it will be convenient for us to consider a
permutation of the natural basis of /2** and of its dual so that the same
projection P can be written as a block matrix

P_ 1nx2 0
"L BT o)

where B is a given n x k matrix (b,).

Hence we will treat (e, ) as the first n coordinates and write the projec-
tion as Y e;®v,. '

Correspondingly we will think of /7,** as /7 @/* and use the notation
[x, y] to denote a vector in /" ¥, where x€!"_ consists of the first n coor-
dinates in the permuted basis ((k,, .., k,) coordinates of the standard
basis) and yel* represent the remaining k coordinates. The space V,, is
thus spanned by vectors v,=[e;, b,], where b,=(b;,, .., by )€l% are the
same as the rows of the matrix B appearing above.

Remark 4.1. If |P| =1 then 1,2,..,neJ(P) and hence

#J(P)zn

THEOREM 4.2.  Let |P|| > 1. Then P is minimal if and only if there exists
a X(B)e 2(B) that satisfies the equation

BD[X(B)]” B=B D4, (4.1)

where D=[d,, ..,d, ] is a kxk non-zero diagonal matrix with non-negative
entries and with d;=0 if j¢ 7 (B") (see Definition 2.3) and A= (4;) is a
k x k matrix with |4, | < 1.

i

Remark 4.3. To illustrate Theorem 4.2 we write the appearing matrices
explicitly in the case n=2,j=3:

v =(1,0,b,,b,,,by3), v2=(0, 1, byy, by, b13),

B=|:b“ bl2 b13:|‘
b22 bZ b23

1 0 0 0 0
0 1 00 0
P=| b, b, 0 0 0
by by 0 0 0
biy by 0 0 0



226 PAN AND SHEKHTMAN

Assuming that
16111 4 1b21) = 1b1a] + |baa] = |b i3] + 1has]| = [Pl > 1, (4.2)
ie, T(P)=1{3,4,5,
0 O d(signb,) ds(signb,,) ds(signb,;)

0 O d(signb,) dysignby) dilsignby)
r={ 00 di/y, dyty dy /s

00 d) A dyiy, dyhs

0 0  di, dyiys dyiss

Then Theorem 4.2 reads: there exist |4, <1, and d,20, d,20, d;>0,
|d,| + |dy| + |ds] > 0, such that

b b b d, 0 0 ]fsignb,, signb, b b b
[ 11 12 13 0 (12 0 Sign blz sign bzz 11 12 13
th b22 b23 . . b?.l b22 b23
0 0 d;)]signhb; signb,

bbb di 0 0 |[ A, Az A

=[ R | A | P § (43)
by by by . . ;
0 0 dyl4n 432 %1

N

Proof of Theorem 4.2. Assume P is minimal. Since ||P| > 1, the norm
| P)| is not attained in the first » rows of the matrix P. By Proposition 2.6
we conclude that there exists I” of the form

r=(z(8)1' D
that annihilates .&/(V, ), where

0 0
D= .
Lo 5]
From the form of P we have

[0 [2(B®1D

Let f=[x,u]eV;. Then
0=fiv;>=LCx¢,>+ {u, b,>, forall j=1,., n
Observe that b, = B”e,. Thus (x,¢,) + {u, B'e;> =0 or

x= —Bu.
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Hence V! = {[ — Bu,u) :uel%}. The condition
tr(/"- [ f®¢;])=0, forall j=1,..,nandforall feV;
can be written as
fUe)=0, forall j=1,..,nand forall feV;. (4.5)
From the form of I" and v; we have
e, =[(2(B)) Db,, AT Db,]=[(Z(B)) DB"e,, A7 DB¢,].
Now the condition (4.5) reads
(Bu, [2(B)] DB7e,> = (u, A" DBe,>
or
(u, BT[Z(B)] DB’¢;y =<u, A" DB’¢,).
Since this equality holds for every ue R, and for all j=1, .., n we have
BT[2(B)] DB"=AT DB,
Transposing this equation we have
BD[2(B)]" B=B DA.

Since every step above can be reversed, Eq. (4.1) implies that the
matrix (4.4) satisfies the conditions of Remark 2.8 and hence the converse
is also true. ||

COROLLARY 4.4. Assume the conditions of Theorem 4.2. Let B, be a
submatrix of the matrix B consisting of the columns i;e 7 (P). Then P is
minimal if and only if there exists a matrix 5(Bg) € 2(B,) such that

B() D_() [X(Bo)] T Bo = Bo D_OAU»

where D, and A, are the appropriate submatrices of the matrices D and A.
Proof. Let D'?= [\/d_I oy \/(_1;] Then D=D'%.D">
From (4.1) we have

(BD'¥)(D'2[X(B)]")B= B DA.

Since d;=0 if j¢ 7(B") the non-zero columns of BD'? coincide with
B, D) while non-zero rows of D'?(X(B))" coincide with the rows of
DY*(X(By))" [cf. (4.3)]. Hence the non-zero columns and rows of the left-



228 PAN AND SHEKHTMAN

hand side of (4.1) coincide with B, D,[Z(By)]” B,. Similarly, the same
holds for the right-hand side.

DEFINITION 4.5. We say that the space V,c/!”'* is Chebyshev if the
dim(V, | i, .. i,)=n for any integers i, <i, < --- <i,<n+k.
In other words, every n x n submatrix of the matrix

1 0 - 0 by - by
0 1 - 0 by - by
00 - t b, - by

is invertible.

Next we will need two simple lemmas.

LEMMA 4.6. Let E be a subspace at 1. Then there exists a projection
Srom 7 into 17 such that ker Q =E and |Q| <./dim E+ 1.

Proof. By [5] there exists a projection R from /7 onto E with ||Ri| <

/dim E.

Let O=7/—R Then kerQ=rangeR=F and |Q|<1+|R|<
Vdim E+ 1.

LemMa 4.7 (cf. [8]). Let T be a right invertable operator from I onto
9. Then the set of all projection Qe #(I7') such that

kerQ=ker T
coincides with the set
(ST:TS=1}.

Proof. Trivially TS =1 implies that ST is a projection in (/7). Since
S is left invertible we have ker S= {0} and

ker ST=ker T.

Conversely let Qe Z(!7) be a projection with ker Q =ker A. Let
V,=range Q.

Then dim V, =4 and /"] = ker Q ® V,. Define an operator T, by
restricting 7 to V:

To==T|Vy: Voo 1.

Then ker T, = {0}; T, maps a g-dimensional space into g-dimensional
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space. Hence T, is invertable. Clearly S= T, 'Q is the right inverse to T
and

0=5T. 1

We are now ready to prove the generalization of the Cheney—Morris
Theorem:

TurOREM 4.8. Let V, be a Chebyshev subspace of 1"**. Let P be an
interpolating projection from 1"** onto V,, such that |P| = i(V,)> 1. Then

#T(P)>n+(|Pl—1).

Proof. In view of Corollary 4.4 we may assumc that #J7(P)=k.
Consider two cases. First, let X <#. Then the matrix B from Theorem 4.2
1s left invertible. Hence (from (4.1))

DP[X(B)]" B=DA.

Suppose that ,#0. Then the j-s diagonal entry of D[X(B)]” B is
d; 37 | 1b;l=d; | P| while the j-s diagonal entry of DA is d,/,. Hence
d;|P|=di;=d;|4,1 <d,. So |P| <1 which contradicts the assumption of
the theorem.

Now suppose k > n. Then dim ker B=k —n and B is invertible from the
right. By Lemmas 4.6 and 4.7 we can choose a right inverse S such that
ISB| <k —n+ 1. Here SB:1* - I*. From (4.1) we have

tr(B D[Z(B)]7)=tr(B DAS)=1r(SB DA).
By direct computation (cf. (4.3))
tr(B D[2(B)]" = (2d)) | PI.
By trace-duality for Z(/}) (cf. Remark 2.9)
tr(SB DA) < |SBY w(DA) < (Vk —n+ 1)(Zd).

Hence

WPl <(Jhk—n+1).
which implies

k—n>(|P]|—1)

or

#T(P)y=k>n+(I1PI-1% 1
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Remark 4.9. The proof of Theorem 4.8 strongly depends on the fact
that ¥, is Chebyshcv. Otherwise, we could not conclude the invertibility of
the matrix B.

Without this assumption we can show that if ¥, =/”*? admits a mini-
mal interpolating projection then A(V,)=1.
As we mentioned earlier for n=2 we can improve this to V,c/°, .

Remark 4.10. From (4.1) it is easy to deduce that if P is minimal and
the vector v; has the property v,v, >0 for all j, i, k then |P|| =1.
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