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We construct a two-dimensional subspace V c C( K) such that an interpolating
projection on V is a minimal projection with the norm > 1. That answers a
question posed by B. L. Chalmers. It also answers a question posed implicitly by a
theorem of P. Morris and E. W. Cheney. We also give a quantitative generalization
of the above mentioned theorem. As is suggested by the title. we use trace duality
to obtain these results. .. 1991 Academic Press. Inc

1. I~TRODl)CTION

This paper addresses a question posed by E. W. Cheney and K. H. Price:

PROBLEM 1.1 [3, Problem 15]. For what subspaces V in C(K) is it true
that at least one of the minimal projections of C(K) onto V is an inter­
polating projection?

Here K is compact Hausdorff space and C( K) is the space of all
continuous real-valued functions on K.

DEFINITION 1.2. For a finite-dimensional subspace V c C(K) we define
the projectional constant of V to be

i.( V) = inf{ II PI: P projection from C(K) onto V}.

DEFINITIO~ 1.3. We say that a projection P from C(K) onto V is
minimal if

II PII = i.( V).

• The research of this author was done in partial fullillment of the Ph.D. degree at the
University of South Florida under the direction of Professors E. B. Saff and B. Shekhtman.
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DEFIl"ITION 1.4. A projection P from C( K) onto V is called an inter­
polating projection if

"
Pl= L f(k,)v"

,- 1

where (kj)cK; (vj}cVis a basis of V and l'j(k,)=6", i,j=l,oo.,n and
Il = dim V.

An easy consequence of a well-known theorem of Nachbin [6] is:

PROPOSITIOl'." 1.5 (cr. [4]). Let V he an n-dimensional suhspace (Jl C( K)
with ;.( V) = 1. Then there exists an interpolating projection P from C( K)
onto V such that P is a minimal projection.

The following problem was open:

PROBLEM 1.6. Does the COilverse to Proposition 1.5 hold?

In Section 3 of this paper (Theorem 3.1) we construct an example of a
subspace V C C(K) such that an interpolating projection is a minimal pro­
jection onto V yet ;.( V) > I, hence giving a negative answer to Problem 1.6.

This example also provides a counterexample (cf. Proposition 3.5) to

COl'."JECTURE 1.7 (Chalmcrs [I]). Let V he a finite-dimensional suh.\pace
of a Banach space X. Let P he a minimal projection from X onto V. Then
p* is a minimal projection Irom X* onto the range ol P*.

Theorem 4.2 answers Problem 1.1 in the finite-dimensional case.

DEFINITIOl'." 1.8. Let P be a projection from C(K) onto V. Define
A p: K --+ R by

AI'(k)=sup{I(Pl)(k)l: II.n:::; I}.

Clearly sup{ IAp(k )1, k E K} = IIPII.

In an attempt to solve Problem 1.1, Cheney and Morris proved the
following:

THEOREM 1.9. (cf. [2]). Let V he an n-dimensional Chebyshev suhspace
of C(K) which admits a minimal interpolatin!? projection P. Then either
IIPI! = 1 or

# {k: Ap(k) = I:PI'} > fl.

(Here # stands for fhe cardinality of the set).
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In Section 4 (Theorem 4.8) we obtain the following generalization of this
result:

Let P he a minimal interpolating projection from C(K) onto an n-dimen­
sional Chebyshev suhspace V. Then

A few words about the methods employed in this paper.
We mostly deal with a finite set K. Hence C(K) = I";;, where m = # K.

Let (ej ) be a canonical vector basis in Rm . If dim V = 11 then an inter­
polation projection from l":c onto V is a projection of the form

"
Px= L <x, e)v"

,= 1

i.e., the point evaluation functionals in this case are vectors ei' j = I, ... , n,
considered as the elements of the space 17.

We use an idea that goes at least as far back as Cheney and Price [3]
and Cheney and Morris [2] to describe a minimal projection as a solution
to a best approximation problem.

Let 2'{I';,) be the space of linear bounded operators from I"; into itself.
Let sf c 2'{I';) be a subspace of 2' defined by

.91 := {A E !f{lr:; ) : Range A eVe ker A }.

Then P is a minimal projection from I"; onto V i[(O is the best approxima­
tion to P from .91. Just as in [2, 3] we usc the dual characterization of best
approximation to conclude that P is minimal if and only if there exists a
functional <p in [2'{I~)] * such that <p annihilates ,cd (i.e., <p(A) =0 for all
A E ow) and

1<p(P)1 = IIPII I'<pl"

The relative "novelty" here is the use of trace duality to describe the
functionals on !f{l";J. While the trace duality is frequently used in Banach
space theory (cf. [5,7]) it is especially transparent for 2'{I';). For
convenience we reprove the needed results in Section 2.

In Section 3 we construct a counterexample to Problem 1.6 and Conjec­
ture 1.

In Section 4 we derive a matrix equation which gives a necessary and
sufficient condition for a space to have interpolating as a minimal one. As
a corollary we derive the generalization of the Cheney-Morris Theorem 2.
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2. TRACE DUALITY
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In this section we introduce some theoretical aspects of trace duality for
the spaces !.fU":.). Although most of this theory is well-known for general
Banach spaces, we find it convenient to prove the results for this particular
case emphasizing the specific details needed in the next sections.

We use e l , ••• , em to denote the canonical bases in R"" and (.,. > to
denote the canonical inner product in R",. /"; and I';' stand for R",
equipped with the norms

ilxll f = max{ I(x, e, >1, j= I, ..., Ill},

Ilxll l = I: I(x, el >1
,-I

respectively.
For y E 1';' and vEl'; we use y ® I: to define an operator in !fUr:: ) as

[y@v](x):= (y, x>l:.

Hence if A E 2U':;) is given by a matrix A = (GIJ) then

where u, are the rows vectors of the matrix A. For A E !.fUn;) given by a
matrix (Gi;l we define

{
m }IIAII :=max I~l jaul,i=I, ...,m .

DEFINITION 2.1. The nuclear norm of A = (ail) is defined by

m

v(A) := I: max la'i I·
i= I i

Next we well need a somewhat unusual notation.

DEFINITION 2.2. Let A = (ail) E:f(!~; ). We use i(A) to denote the class
of matrices ('\'i,) defined by

{

I if Q,,>O

S,,= -I if G'j<O

any number from [ - I, I] if a'j = 0,

1>40 65 2-H
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DEFINITION 2.3. For a t x m matrix A == (a/j ) define an extremal set

Y(A)=={i:f laijl==IIAII,i==I, ...,t}.
I-I

PROPOSITION 2.4. Let A==(a ij )E5L'U':::); r==(Yij)E5L'U':::). Then

1. Itr(Ar)1 ~ IIAII v(r),

2. The equality in 1 is attained if and only if r == ± [.E(A)] T D where
[.E(A)]El(A) and D== Edt, ..., dm ] is a diagonal matrix

with dj~O and dj==O ifjrtY(A),

3. In particular for any matrix A there exists r such that tr(Ar) ==
IIAII v(r).

Proof To prove 1, observe that

Itr An == lit j~t aij,iil ~ i~1 (m~x I,jil) (~t laijl)

~ m~x C~I laijl). it, mfx li'JlI.

To prove 2, note that the first inequality in (2.1) is an equality if and
only if each column of the matrix r is a positive constant multiple of the
vector (sign aij), j == 1, ..., m, while the second inequality is an equality if and
only l'ij==O ifjrtY(A).

Finally 3 follows from 2. I

PROPOSITION 2.2. Let NUr;:,) stand for the space of all m x m matrices
equipped with the nuclear norm v. Then .AI"W~) is isometrically isomorphic to
[5L'U:)]*.

Moreover, every functional CfJ E [5L'U~:))]* is uniquely identified with a

BE.AI"U:) by

CfJB(A) == tr(AB),

IICfJBII == v(B).

for all A E 5L'U:),

Proof Since m2==dim5L'U:)==dim[~U~~,)]*==dim.Al"U';) we con-
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clude that the spaces in question are algebraically isomorphic. Proposi­
tion 2.4( 3) shows that the map B --+ cP B is an isometric isomorphism. I

Let V" be an n-dimensional subspace of I'~..
Let sl( V,,) := {A E!£(I"~): Range A c V" c ker A}.
Let 2fl( V,,) := {P E.:£(/'; ) : P is a projection from I": onto V,,}.

PROPOSITION 2.6. Let P E ;11'( V,,). Then P is minimal if and only if there
exist [2:(P)] E f( P) and a diagonal operator D = [d l , ... , d",] such that

tr( [.E(P)] T DA) = 0, .F)r all A E .<1( V,,). (2.2)

Proof. Note that P + .<1( V,,) = .'11'( V,,), for every P E2J!( V,,). Hence, P is
minimal if and only if zero is the best approximation to P from .<1( V,,).
Therefore P is minimal if and only if zero is the best approximation to P
from .0J( V,,). Therefore P is minimal if and only if there exists a functional
cpE [!£(/'~)]* such that cp(P) = IIPIII~CPil and cp(A)=O for all A E.d.

According to Proposition 2.5 this is equivalent to the existence of an
operator 1 E.rw:.) with

(a) tr(pn = IIPIII'(I'),

(b) tr(AT)=OforallAE.<1(V,,).

Using Proposition 2.4(2) we conclude that 1 is of the form [E(P)] T D. I
Remark 2.7. The space V;; consists of all vectors x E17' that annihilate

V"' i.e.,

V;; = {XEI';': <x, v) =0 for all VE V,,}.

Hence dim V,; = m - n. Let l'1' ... , v" be a basis for V" while II' ..., Im _" is
a basis for V;;.

Then

.9/( V,,) = spanUi® vJ
; i= I, ..., m - n;j= I, ..., n}.

Therefore [1'( A)] r D annihilates .<1( V,,) if and only if

tr([l'(A)]r D[I®t'J)= (r" [1'(A)Y Dr) =0,

for all i = I, ..., m - n; j = I, ... , n.

Remark 2.8. Proposition 2.6 is equivalent to: P is minimal if and only
if there exists a lE .q/';) with

(a) tr(PT) = IIPli I'(T),

(b) tr(AI') = 0 for all A E.~( V,,).
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Remark 2.9. A proposition similar to Proposition 2.5 can be proved for
operators in 2(1';').

In this case the norm of A = (au) E 2(17') is defined to be

!IAII =max ttl !a"I,j= 1, ..., m},

while the norm in ,IV(I';') is

In

v(A) = L max laul
;= I /

and tr(AB) ~ IIA II v(B).

3. THE MAIN EXAMPLE

THEOREM 3.1. There exists a two-dimensional subspace V2 c I: such
that the interpolating projection P = e l ® VI + e2 ® V 2 is minimal and
IIPII > l.

Proof Let

VI = (1,0, 2 +4)2, J}, 2 +4)2, J}).
_ (0 )2 2 +)2 _)2 _ 2 + )2)

V 2 - ,I, 4' 4 ' 4' 4 '

Consider the projection P = e l ® VI + e2 ® V2 • In matrix form

I, 0, 0, 0, 0, °0, 1, 0, 0, 0, °2+)2 )2 0, 0, 0, °4 4 '

P=
j2 2+j2

0, 0, 0, °4 ' 4
2-t-fi fi

0, 0, 0, °4 -4'
j2 _2+j2 0, 0, 0, °4 ' 4
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Next we describe the space .9f( V2 ). Note that the vector

f= (XI' X2' II' 12, 13, (4) belongs to Vi if and only if

_ 2+J2 J2 2+J2 J2
0- (f, rl)=x I +-4-11 +412+-4-13+414,

J2 2+J2 J2 2+J2
0=(f,V2)=X2+ 4 11+ 4 12-

4
13- 4 14,

Choosing (1 1,12 , I], (4 ) to be consecutively (1,0,0,0), (0,1,0,0),
(0,0, 1,0), and (0,0,0, 1) we obtain the basis fl' f2' f], f4 for Vi as

( 2+J2 J2 )fl = - 4 ' - 4' 1, 0, 0, °,
/2=(-f,- 2+4

J2,0, 1,0,0),

( 2+J2 J2 )
/] = - 4 ' +4' 0, 0, 1, °,

( J2 2+J2 )f4 = - 4' + 4 ' 0, 0, 0, 1 .

Now s1( V2 ) can be written as a linear span of A~j) with

A(J)=/,@v' ) = 1, ..., 4; i = 1, 2.
J .J l'

Next pick the operator r to be

0, 0, 1, 1, 1, 1

0, 0, 1, 1, -1, -1

r=
0, 0, 1, 1, 1, °0, 0, 1, 1, 0, -1
0, 0, 1, 0, 1, 1
0, 0, 0, -1, 1, 1

By Proposition 2.4(2) (or by direct calculation) we have

2+2 '2tr(Pr) = IIPII v(r)=4x y' =2(1 +J2),
4

II PII = 2+ 2J2 = 1+ J2
4 2 > 1.

To prove that P is minimal (cf. Remark 2.8) it suffices to prove that

O=tr(rAl)))=fj(Fv;); i= 1, 2;)= 1, 2, 3, 4.



224 PA"! A"!D SHEKHTMAN

We have

r, - (t /2 0 t 3 ",/2 2 + .j2 3 ",/2 2 +fi)
II - + 'oj , , + 4' 4 ' t + 4' 4 '

~ r ~ r
T' = (0 I /2 2 + V 2 4 + 3 V 2 _ 2 + V 2 _ 4 + 3 V2)

/;2 , + V, 4 ' 4 ' 4' 4 '

It is now easy to verify that 0 =.f;(l'v 1) =.f;(Tl'2);j= 1,2,3,4. I

Remark 3.2, The space V2 in the previous theorem is 10 fact a
symmetric Banach space in the sense that

for all :x, fJ E R,

Remark 3.3. The space V2 constructed above is a Chebyshev subspace
of C(K), where K = {I, 2, 3, 4, 5, 6} in the sense that V2 restricted to any
two points is two-dimensional. Equivalently every 2 x 2 submatrix of the
matrix

[:

2+J2 /2 ') ;-

~ ]0 .Y...- ~+'Vi2

_2\J24 4 4
~

2+/2
,

v/ 2 _ ~2
4 4 4

is invertible.

Remark 3.4. It is possible to show that "six" (the dimension of I~ ) is
the least possible, If Vn is a subspace of I'~ with m ~ 5 that admits a
minimal interpolating projection then ;.( V,,) = I.

PROPOSITIO:-l 3.5. The projection P constructed above provides a counter­
example to Conjecture t, i,e" p* is not a minimal projection from 1';' onto the
range of P*.

Proof Clearly the range of p* is span{el,e2}c/~. Consider the
projection Q from 17 onto span {e 1 , e2} defined as

Qx= <x, e l )e l + <x, e2)c2'

Then IIQxill = I<x, el)1 + <x, e2 )\ ~L~- I <x, e;)= Ilx11 1 • Hence 1= IIQII <
IIP·II since IIP*I' = IIPII > I. I

4. CHENEy-MoRRIS THEOREM

In this section we will assume that Vn is an n-dimensional subspace of
1'~lk. Every interpolating projection from I"/k onto V" can be written as
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P= L;~ I ek;®vj , where (k l , ... , k n ) is a collection of distinct integers
between 1 and n + k. In this case it will be convenient for us to consider a
permutation of the natural basis of l'~+ k and of its dual so that the same
projection P can be written as a block matrix

where B is a given n x k matrix (b i)).

Hence we will treat (ek,) as the first n coordinates and write the projec­
tion as L ej ® Vi'

Correspondingly we will think of 1:+ k as l''x ffi I ~ and use the notation
[x, y] to denote a vector in l"x~k, where xE/'~ consists of the first n coor­
dinates in the permuted basis ((k I, ... , k n ) coordinates of the standard
basis) and y E I~ represent the remaining k coordinates. The space Vn is
thus spanned by vectors vi = rei' bj], where b)= (bil , ... , b)dE/"x are the
same as the rows of the matrix B appearing above.

Remark 4.1. If IIPII = I then 1,2, ..., n E .'Y'(P) and hence

# .'Y'(P) ~ n.

THEOREM 4.2. Let II PII > 1. Then P is minimal if and only if there exists
a .2:(B) E f(B) that satisfies the equation

BV[L'(B)Y B= B VA, (4.1 )

where V = [d l , ... , dk ] is a k x k non-zero diagonal matrix with non-negative
entries and with d;=O if j¢.9"'(B T

) (see Definition 2.3) and A = ().i/) is a
kxk matrix with 1).;;1 ~ 1.

Remark 4.3. To illustrate Theorem 4.2 we write the appearing matrices
explicitly in the case n = 2,j = 3:

V I = (l, 0, b I I , h 12' b 13), V2 = (0, 1, h 21 , b22 , b23 ),

[hll
h l2 h13JB=

bn h 2 b23 '

I 0 0 0 0

0 I 0 0 0

P= hll h21 0 0 0

h l2 h n 0 0 0

h13 h 23 0 0 0
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Iblll + ;h 21 1= Ihd + Ihnl = Ih 13 1+ Ih 23 1= IPII > I, (4.2)

i.e., Y(P) = p, 4, 5},

0 0 dl(signb ll ) d2(signh 12 ) d3(sign h 13 )

0 0 d l(signb 21 ) d 2(sign hn ) d,(sign h 23 )

T= 0 0 d l lit d2 /' 21 d3 ;.31

0 0 dJI2 tl2).n d3 A32

0 0 tl l /' 13 tl2 /· n d3 ;'33

Then Theorem 4.2 reads: there exist li'i,1 ~ I, and d l ~ 0, d2 ~ 0, d3 ~ 0,
Idll + Id21+ Id31> 0, such that

...·12 ,,,]
A22 ~'23 .

...·32 ...·3.1

(4.3)

Proof of Theorem 4.2. Assume P is minimal. Since II Plj > I, the norm
II PII is not attained in the first n rows of the matrix P. By Proposition 2.6
we conclude that there exists r of the form

r= [l'(B)J!D

that annihilates ..cI( VII)' where

D=[~ ~J
From the form of P we have

I'= [~ [2.~\~~ D]. (4.4 )

Let f = [x, u] E V;,-. Then

0= <I; Vi) = <x, e) + <u, h,), for all j = I, ..., n.

Observe that hj = BTej . Thus <x, e,) + <u, Bre) >= 0 or

x= -Bu.
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Hence V;, = {[ - Bu, u) : u E 17}. The condition
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tr(1"· [/® v,J) = 0,

can be written as

f(Ft) =0,

for all j = 1, ... , n and for all f E V,;

for all j = 1, ..., n and for all f E V;: . (4.5)

From the form of rand l:; we have

h, = [(.E(B)) Dh;, AT Dh;) = [(.E(B)) DBle" AT DBTeJ.

Now the condition (4.5) reads

or

Since this equality holds for every u E Rk and for allj = 1, ..., n we have

Transposing this equation we have

B D[l.'(B))1 B= B DA.

Since every step above can be reversed, Eq. (4.1) implies that the
matrix (4.4) satisfies the conditions of Remark 2.8 and hence the converse
is also true. I

COROLLARY 4.4. Assume the conditions oj Theorem 4.2. Let Bo he a
suhmatrix ol the matrix B consisting oj the columns i;E.?T(P). Then P is
minimal it" and O/l(V il there exists a matrix .E(Bo) E t(Bo) such that

Bo 150 [l.'(Bo)J T Bo= Bo DoA o,

1I'11ere 150 and Ao are the appropriate suhmatrices of the matrices 15 and A.

'.2_ 0.J'-- -_ '2 1.2Proof. Let D - [vd, ...., d"J. Then D-D ·D .
From (4.1) we have

Since d; = 0 if j ¢ !/(B"I) the non-zero columns of BD' 2 coincide with
Bo Db/ 2 while non-zero rows of D 12(l'(B)f coincide with the rows of
Di/2(1.·(Bo))"1 [cf. (4.3)]. Hence the non-zero columns and rows of the left-
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hand side of (4.1) coincide with Bo Do [E( Bo)] T Bo. Similarly, the same
holds for the right-hand side.

DEFINITION 4.5. We say that the space V" c I'~' k is Chebyshev if the
dim(Vnl it, ..., i,,)=n for any integers i, <i2 < ... <in~n+k.

In other words, every n x n submatrix of the matrix

is invertible.

[

I 0

o I

o 0 hIlI

Next we will need two simple lemmas.

LEMMA 4.6. Let E be a suhspace at I';'. Then there exists a projection Q

from I';' into l't" such that ker Q = E and IIQII < Jdim E + I.

Proof By [5] there exists a projection R from I',n onto E with IIRil <
Jdim E.

Let Q= 1- R. Then ker Q= range R = E and IIQII ~ I + IIRII <
,,/dim E + I.

LEMMA 4.7 (cf. [8]). Let T be a right invertable operator from I;n onto
Ii. Then the set of all projection QE !fl(l7') such that

ker Q= ker T

coincides with the set

{ST: TS=I}.

Proof Trivially TS = 1 implies that ST is a projection in !fl(l';'). Since
S is left invertible we have ker S = {O} and

ker ST = ker T.

Conversely let Q E 2"(1';') be a projection with ker Q= ker A. Let
Vo = range Q.

Then dim Va = q and I'~ = ker Q ® Vo. Define an operator To by
restricting T to Vo:

To= =TI Vo : Vo--+/i·

Then ker To = {O}; To maps a q-dimensional space into q-dimensional
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space. Hence To is invertable. Clearly S = T(; IQ is the right inverse to T

and

Q =ST. I

We are now ready to prove the generalization of the Cheney-Morris
Theorem:

THEOREM 4.8. Let V" he a Chebyshev suhspace of I'~+ '. Let P he an
interpolatinf? projection from 1"/' onto V" such that il PI = i.( V,,) > I. Then

#Y(P) > n + (IIPII- 1)2.

Proof In view of Corollary 4.4 we may assume that # Y-(P) = k.
Consider two cases. First, let k ~ n. Then the matrix B from Theorem 4.2
is left invertible. Hence (from (4.1 ))

D[I(B)] T B = 1511..

Suppose that dj # O. Then the j-s diagonal entry of 15[2.:(B)] T B is
dj I..;' I Ihij 1= dj I! PII while the j-s diagonal entry of 1511. is dJij. Hence
dj IP!I = djAij = d; Ii'lf I~ d,. So il PII ~ I which contradicts the assumption of
the theorem.

Now suppose k > n. Then dim ker B = k - nand B is invertible from the
right. By Lemmas 4.6 and 4.7 we can choose a right inverse S such that
ISBII <Jk-n+ l. Here SB:/7 -+/~. From (4.1) we have

tr(B 15[I(B)] T) = tr(B 15I1.S) = tr(SB 1511.).

By direct computation (ef. (4.3))

tr(B 15[L(B)]T = (Ldj ) IIPII.

By trace-duality for 2'(l~) (ef. Remark 2.9)

tr(SB 1511.) ~ IISB!I \·(1511.) ~ (\./k - n + I HId,).

Hence

which implies

k - n > (II PII _ I )2

or

#.'1(P)=k>n+(IIPII-I)2. I
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Remark 4.9. The proof of Theorem 4.8 strongly depends on the fact
that V" is Chebyshev. Otherwise, we could not conclude the invertibility of
the matrix B.

Without this assumption we can show that if V" c I':x.~ 2 admits a mini­
mal interpolating projection then i.( V,,) = I.

As we mentioned earlier for n = 2 we can improve this to V2 C 15
, •

Remark 4.10. From (4.1) it is easy to deduce that if P is minimal and
the vector vi has the property V]iV ik ~ 0 for all j, i, k then IIPII = I.
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